33 research outputs found

    Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package

    Get PDF
    A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller–Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube

    Force Matching as a Stepping Stone to QM/MM CB[8] Host/Guest Binding Free Energies: A SAMPL6 Cautionary Tale

    No full text
    Use of quantum mechanical/molecular mechanical (QM/MM) methods in binding free energy calculations, particularly in the SAMPL challenge, often fail to achieve improvement over standard additive (MM) force fields. Frequently, the implementation is through use of reference potentials, or the so-called “indirect approach”, and inherently relies on sufficient overlap existing between MM and QM/MM configurational spaces. This overlap is generally poor, particularly for the use of free energy perturbation to perform the MM to QM/MM free energy correction at the end states of interest (e.g., bound and unbound states). However, by utilizing MM parameters that best reproduce forces obtained at the desired QM level of theory, it is possible to lessen the configurational disparity between MM and QM/MM. To this end, we sought to use force matching to generate MM parameters for the SAMPL6 CB[8] host–guest binding challenge, classically compute binding free energies, and apply energetic end state corrections to obtain QM/MM binding free energy differences. For the standard set of 11 molecules and the bonus set (including three additional challenge molecules), error statistics, such as the root mean square deviation (RMSE) were moderately poor (5.5 and 5.4 kcal/mol). Correlation statistics, however, were in the top two for both standard and bonus set submissions (R2 of 0.42 and 0.26, T of 0.64 and 0.47 respectively). High RMSE and moderate correlation strongly indicated the presence of systematic error. Identifiable issues were ameliorated for two of the guest molecules, resulting in a reduction of error and pointing to strong prospects for the future use of this methodology

    Accelerating QM/MM Free Energy Computations via Intramolecular Force Matching

    No full text
    The calculation of free energy differences between levels of theory has numerous potential pitfalls. Chief among them is the lack of overlap, i.e., ensembles generated at one level of theory (e.g., “low”) not being good approximations of ensembles at the other (e.g., “high”). Numerous strategies have been devised to mitigate this issue. However, the most straightforward approach is to ensure that the “low” level ensemble more closely resembles that of the “high”. Ideally, this is done without increasing computational cost. Herein, we demonstrate that by reparametrizing classical intramolecular potentials to reproduce high level forces (i.e., force matching) configurational overlap between a “low” (i.e., classical) and “high” (i.e., quantum) level can be significantly improved. This procedure is validated on two test cases and results in vastly improved convergence of free energy simulations

    How Mechanical Forces on the Ribosome Modulate the Speed of Protein Synthesis

    No full text
    Mechanical forces acting on the ribosome can alter the speed of protein synthesis. These forces can arise from co-translational protein folding, indicating that co-translational processes can regulate translation through mechanochemical mechanisms. The factors governing force generation due to co-translational folding and the contribution of unfolded nascent chain segments to the magnitude of the pulling force are unknown. Furthermore, the mechanism by which force is transduced 10 nm to the ribosome\u27s catalytic core, and how it modulates peptide bond formation are also unknown. Here, we address these issues using all-atom and coarse-grained molecular dynamics simulations as well as in situ experimental measurements of changes in nascent-chain extension in the exit tunnel. We first show that domain topology and stability play a key role in determining the magnitude of the pulling force generated during co-translational folding. Next, we demonstrate that when the number of residues composing a nascent chain increases, its unstructured segments outside the ribosome exit tunnel generate piconewtons of force that is transmitted through the polypeptide backbone to the ribosome\u27s catalytic core. Utilizing quantum mechanical calculations, we find that these pulling forces decrease the free energy barrier height to peptide bond formation indicating that elongating chains can accelerate translation. Since nascent protein segments start out as unfolded structural ensembles, these results indicate a universal pulling force is present during protein synthesis that increases as a protein elongates and modulates the speed of synthesis

    Web-Based Computational Chemistry Education with CHARMMing III: Reduction Potentials of Electron Transfer Proteins

    Get PDF
    A module for fast determination of reduction potentials, E°, of redox-active proteins has been implemented in the CHARMM INterface and Graphics (CHARMMing) web portal (www.charmming.org). The free energy of reduction, which is proportional to E°, is composed of an intrinsic contribution due to the redox site and an environmental contribution due to the protein and solvent. Here, the intrinsic contribution is selected from a library of pre-calculated density functional theory values for each type of redox site and redox couple, while the environmental contribution is calculated from a crystal structure of the protein using Poisson-Boltzmann continuum electrostatics. An accompanying lesson demonstrates a calculation of E°. In this lesson, an ionizable residue in a [4Fe-4S]-protein that causes a pH-dependent E° is identified, and the E° of a mutant that would test the identification is predicted. This demonstration is valuable to both computational chemistry students and researchers interested in predicting sequence determinants of E° for mutagenesis

    Web-Based Computational Chemistry Education with CHARMMing II: Coarse-Grained Protein Folding

    Get PDF
    A lesson utilizing a coarse-grained (CG) G-like model has been implemented into the CHARMM INterface and Graphics (CHARMMing) web portal (www.charmming.org) to the Chemistry at HARvard Macromolecular Mechanics (CHARMM) molecular simulation package. While widely used to model various biophysical processes, such as protein folding and aggregation, CG models can also serve as an educational tool because they can provide qualitative descriptions of complex biophysical phenomena for a relatively cheap computational cost. As a proof of concept, this lesson demonstrates the construction of a CG model of a small globular protein, its simulation via Langevin dynamics, and the analysis of the resulting data. This lesson makes connections between modern molecular simulation techniques and topics commonly presented in an advanced undergraduate lecture on physical chemistry. It culminates in a straightforward analysis of a short dynamics trajectory of a small fast folding globular protein; we briefly describe the thermodynamic properties that can be calculated from this analysis. The assumptions inherent in the model and the data analysis are laid out in a clear, concise manner, and the techniques used are consistent with those employed by specialists in the field of CG modeling. One of the major tasks in building the G-like model is determining the relative strength of the nonbonded interactions between coarse-grained sites. New functionality has been added to CHARMMing to facilitate this process. The implementation of these features into CHARMMing helps automate many of the tedious aspects of constructing a CG G model. The CG model builder and its accompanying lesson should be a valuable tool to chemistry students, teachers, and modelers in the field

    Origins of the Mechanochemical Coupling of Peptide Bond Formation to Protein Synthesis

    No full text
    Mechanical forces acting on the ribosome can alter the speed of protein synthesis, indicating that mechanochemistry can contribute to translation control of gene expression. The naturally occurring sources of these mechanical forces, the mechanism by which they are transmitted 10 nm to the ribosome’s catalytic core, and how they influence peptide bond formation rates are largely unknown. Here, we identify a new source of mechanical force acting on the ribosome by using in situ experimental measurements of changes in nascent-chain extension in the exit tunnel in conjunction with all-atom and coarse-grained computer simulations. We demonstrate that when the number of residues composing a nascent chain increases, its unstructured segments outside the ribosome exit tunnel generate piconewtons of force that are fully transmitted to the ribosome’s P-site. The route of force transmission is shown to be through the nascent polypetide’s backbone, not through the wall of the ribosome’s exit tunnel. Utilizing quantum mechanical calculations we find that a consequence of such a pulling force is to decrease the transition state free energy barrier to peptide bond formation, indicating that the elongation of a nascent chain can accelerate translation. Since nascent protein segments can start out as largely unfolded structural ensembles, these results suggest a pulling force is present during protein synthesis that can modulate translation speed. The mechanism of force transmission we have identified and its consequences for peptide bond formation should be relevant regardless of the source of the pulling force

    Identification of Ecdysone Hormone Receptor Agonists as a Therapeutic Approach for Treating Filarial Infections

    No full text
    BACKGROUND: A homologue of the ecdysone receptor has previously been identified in human filarial parasites. As the ecdysone receptor is not found in vertebrates, it and the regulatory pathways it controls represent attractive potential chemotherapeutic targets. METHODOLOGY/ PRINCIPAL FINDINGS: Administration of 20-hydroxyecdysone to gerbils infected with B. malayi infective larvae disrupted their development to adult stage parasites. A stable mammalian cell line was created incorporating the B. malayi ecdysone receptor ligand-binding domain, its heterodimer partner and a secreted luciferase reporter in HEK293 cells. This was employed to screen a series of ecdysone agonist, identifying seven agonists active at sub-micromolar concentrations. A B. malayi ecdysone receptor ligand-binding domain was developed and used to study the ligand-receptor interactions of these agonists. An excellent correlation between the virtual screening results and the screening assay was observed. Based on both of these approaches, steroidal ecdysone agonists and the diacylhydrazine family of compounds were identified as a fruitful source of potential receptor agonists. In further confirmation of the modeling and screening results, Ponasterone A and Muristerone A, two compounds predicted to be strong ecdysone agonists stimulated expulsion of microfilaria and immature stages from adult parasites. CONCLUSIONS: The studies validate the potential of the B. malayi ecdysone receptor as a drug target and provide a means to rapidly evaluate compounds for development of a new class of drugs against the human filarial parasites
    corecore